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Abstract

The joint modeling framework has found extensive applications in cancer and other

biomedical research. For example, recent initiatives and developments in precision

medicine call for appropriate prognostic tools to assist individualized or personalized

approaches in cancer diagnosis and treatment. Data generated by clinical trials and

medical research often include correlated longitudinal marker measurements and time-

to-event information, which are possibly a recurrent event, competing risks, and a

survival outcome. Primary interests of joint modeling include the association between

the longitudinal marker measurements and time-to-event data, as well as predictions

of survival probabilities of new observational units from the same population.

The dissertation deals with joint dynamic modeling of a longitudinal marker,

recurrent competing risks, and a terminal event. To tackle the problem of simulta-

neously modeling three types of data processes, we begin by proposing joint dynamic

models of recurrent competing risks (RCR) and a terminal event (TE). We adopt

the counting process approach of survival analysis to specify the joint models, where

history of data, or filtration is considered. Intensity processes of the recurrent com-

peting risks (RCR) and the terminal event (TE) also includes fixed covariates, past

event occurrences as well as impact of possible interventions. Impact of past event

occurrences is important to be accounted for in the intensity processes because it

is reasonable to assume that if a unit has experienced a certain type of recurrent

event many times up to time t, the probability of a new event occurrence of this

unit could either increase or decrease compared to those who have experienced fewer

event occurrences, depending on the context of the data. Consequently, as the differ-
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ent aspects of the intensity processes change over time, the intensity processes evolve

dynamically.

A frailty variable, or latent variable, which is unobserved, is often used to in-

duce association in survival analysis. We introduce a frailty variable Z into the joint

dynamic model proposed previously. For parameter estimation, we propose semi-

parametric inference procedures for the joint models with no-frailty and with frailty

cases. Nelson-Aalen type of estimators are derived for baseline hazards, and partial

likelihoods are obtained to estimate the unknown finite-dimensional parameters in

the joint models. We illustrate the inference procedures on simulated datasets. Sim-

ulation studies with moderate sample sizes are performed to understand large/finite-

sample properties of the proposed estimators. We also address the issue of predicting

terminal event (TE) probabilities of a new unit from the same population, and provide

an example for the simulated population.

When correlated longitudinal marker measurements, recurrent competing risks

event occurrences, and status of a terminal event are the data of interest, we propose

a joint dynamic model that link the three data processes together. The joint dynamic

model consists of the longitudinal marker (LM) submodel, the recurrent competing

risks (RCR) submodal, and the terminal event (TE) submodel. For each observa-

tional unit, the marker is measured at irregularly spaced times within the monitoring

period or until the terminal event happens. The longitudinal marker submodel is a

mixed model with a fixed linear time trend. A frailty variable, or the random effect

in the submodel induces both within-subject correlation as well as the association

between the longitudinal marker process and the recurrent competing events. Ad-

ditionally, this random variable induces correlation between the longitudinal marker

values and the terminal event. The joint models capture dependence structure of the

data from the following two aspects: firstly, past longitudinal marker history affect

the intensity process of the recurrent competing events, including that of the terminal

vi
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event; at the same time, past event occurrences of RCR also affect the mean process

of the longitudinal marker. Secondly, the frailty variable represents all other unob-

served variables that induce associations between the different processes (LM, RCR,

and TE). Built upon the aforementioned joint dynamic model of RCR and TE, the

proposed joint dynamic models (of LM, RCR and TE) possess similar dynamic na-

ture. A semiparametric inference procedure involving an EM algorithm is proposed.

Future research activities for this joint model are indicated.
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Chapter 1

Introduction

In many engineering, biomedical, public health, economics, sociology, and psychology

settings, of main interest is the time to occurrence of some terminal event for an ex-

perimental unit (e.g., patient, experimental mouse, cell line, computer chip, medical

device, diagnostic machine, county, city, stock, etc.). Terminal events typically pos-

sess a detrimental character such as death, onset of a disease, metastasis of cancer,

outbreak of an epidemic, occurrence of a stroke, occurrence of a heart attack, failure

of a medical device, among others. However, in some cases, it may also have a bene-

ficial nature such as when getting cured of a disease, being released from a hospital,

containment of an epidemic, among others.

Studies dealing with the times to a terminal event often encounter the phenomenon

of right-censoring and/or left-truncation (cf. [28], [11], [2]) where for some units the

exact time to event occurrence is not observed. Early work in survival analysis dates

back to [29], where a nonparametric estimator of survival function is proposed.

In addition, it is of importance to take into consideration concomitant variables

that could be impacting the time to occurrence of the terminal event. Popular models

for the time to occurrence of a terminal event such as the Cox proportional hazards

model (CPHM) ([10]), the accelerated failure time model (AFTM) ([28]), and Aalen’s

additive hazards model ([2]) incorporate both right-censoring and/or left-truncation

and the covariate information. Statistical analysis approaches for these models could

be found, for instance, in the books by (cf. [28], [11], [17], [5], and [2]).

Many works modeling recurrent event data have emerged in recent years. Refer-
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ences can be found in (cf. [47], [6], [64], [3], [62], [44], [42], [39], [43]), among others.

Interests of statistical inference in these papers often lie in the stochastic mechanism

that governs the occurrences of the recurrent event. Relevant random quantities like

the gap-times (or inter-event times), or the distribution of the kth (k = 1,2, · · · ) oc-

currence of the recurrent event are studied, and many models also take into account

information of covariates. The impact of interventions after each event occurrence

and the effect of accumulating event occurrences on the unit were taken into account

leading to general classes of dynamic recurrent event models (cf. [42]; [43]). There are

also papers dealing with the joint modeling of a terminal event and recurrent events

such as those by [18]. These joint models could have important practical implications

since one may utilize information regarding the occurrences of the recurrent event

to improve knowledge of the occurrence of the terminal event, in particular in the

context of personalized and/or precision medicine approaches. In monitoring occur-

rences of a recurrent event, there is usually a random window of observation, with

the upper limit of this observation window determined by either an administrative

constraint, a censoring time, or the time to occurrence of a terminal event. This

induces a complex probabilistic structure on the observed random entities induced

by the so-called sum-quota accrual scheme and which leads to size-biased sampling

phenomena.

Real life applications often involve several competing recurrent events. Such ap-

plications include analyses of a variety of datasets (cf. [46], [14], [57], [56]). Instead

of considering only one recurrent event, there could be several recurrent events which

all have an impact on the time to occurrence of the terminal event. The importance

of these competing recurrent events in terms of the terminal event could vary, and

these competing recurrent events could also be affecting each other. Similar to a

single recurrent event, interest of analyzing recurrent competing risks data focuses

on the stochastic processes that generate the observed recurrent competing events.

2
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Typically, the random quantities associated with the stochastic processes include es-

timating cumulative incidence functions (cf. [14], [15], [31]), gap time distributions

(cf. [50]), distribution of event counts (cf. [18]), and inferences on covariate informa-

tion for both fixed (cf. [14], [10], [43]) and time-varying cases (cf. [46], [16], [32]).

Joint modeling approaches have been proposed to simultaneously study recurrent

event and terminal event processes together (cf. [24], [34], [53], [13]). In these cases,

the recurrent event is correlated with the terminal event of interest. We hope to

utilize information from recurrent competing risks to understand a terminal event

process, and propose a joint dynamic model to simultaneously model these processes

together in Chapter 2 and Chapter 3 . The proposed models possess a dynamic fea-

ture owing to the stochastic modeling framework, making the models more realistic

and easy to interpret. Parameter estimation procedures for both no-frailty and frailty

cases are proposed . Predictions of a new unit’s terminal event time using informa-

tion from recurrent competing risks are also discussed. Potential applications of the

model include but not limited to personalized medicine, precision medicine, predic-

tion of adverse health outcomes, and prediction of destructive event in nature like an

earthquake and in an economy such as recession or dropping of Dow-Jones Industrial

Average by more than 5% based on information from some recurrent competing risks.

In biomedical and clinical research, a longitudinal marker is also often correlated

with a recurrent event, or recurrent competing risks. In such situations, joint models

that simultaneously link a longitudinal marker, or multiple longitudinal markers and

a recurrent (competing) risks are constructed (cf. [22], [65], [13], [25], [33], [7]). The

joint modeling approach has also been applied to data resulting from many biomedical

and clinical studies where longitudinal measurements are associated with a survival

outcome. One of the earlier motivations of the joint modeling framework came from

HIV research and a key question of interest was to understand the association between

a CD4 load profile and time to disease progression (cf. [40], [58], [66], [59], and [60]).

3
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The models deal with the association between the longitudinal marker process and

the recurrent (competing) event processes through latent classes (cf. [22]), random

effects (cf. [33]) or latent zero-mean Gaussian processes (cf. [65], [13]). In addition

to longitudinal measurements, other potentially useful information available from ob-

servations often include baseline covariates, demographic information and treatment

assignment, which are commonly collected and recorded in clinical research (cf. [60],

[21]). When the longitudinal marker is correlated with a survival outcome, joint

modeling framework shows superiority over modeling the two processes separately.

Goals of the longitudinal marker and survival outcome joint models usually focus

on associations between the marker(s) and the survival outcome, as well as prediction

of survival times (cf. [63], [59], [55], [49], [60], [9], [23], [61], [26]). In the two

submodels that comprise of the joint model, dependence between the longitudinal

measurements and survival outcome is often realized through either the past history

of the longitudinal marker, or a shared random effect (cf. [60]). Shared random effect

models (cf. [34], [36], [38]) are also common approaches which use shared random

variable, frailty variable or latent classes induce association between the longitudinal

marker and survival outcome.

In recent years, the joint modeling framework is seen in developing joint models

for longitudinal marker, recurrent (competing) risks and a survival outcome, and a

terminal event as well (cf. [35], [30], [8]). For instance, in [35], a joint model is

constructed using a dataset where CD4 counts as well as occurrences of a recurrent

disease and death were recorded on patients infected with HIV. It was observed that

longer survival of patients are associated with higher CD4 counts and lower rate of

disease re-occurrence. At the same time, the longitudinal measurements are also

associated with rate of disease occurrences. To model the correlated processes, the

authors used random effects to induce associations. However, compared to joint

models of LM/RCR or RCR/TE, the type of joint model LM/RCR/TE has been

4
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attempted less.

Within the joint modeling framework, dynamic joint modeling build the history

of the longitudinal measurements, and often takes into account past history of the

longitudinal measurements when updating the hazard of a recurrent event. Since the

longitudinal marker measurements are associated with the terminal event, the past

history of the longitudinal maker also affects the hazard of the terminal event (cf.

[48], [51], [37], [52], [8]). Consequently, the hazard of terminal event also updates

as the longitudinal marker process evolves. In biomedical applications, the dynamic

joint modeling provides a way to predict survival probabilities of new observational

units from the same population. (cf. [51], [8])

In Chapter 4, we propose a dynamic joint model that link longitudinal measure-

ments, correlated recurrent competing risks and a terminal event together. The joint

model consists of the longitudinal marker (LM) submodel, the recurrent competing

risks (RCR) submodel, and the terminal event (TE) submodel. The joint model

takes into account past history of the longitudinal marker when modeling the inten-

sity processes of recurrent competing risks (RCR). History of the longitudinal marker

also affects the intensity process of the terminal event (TE). Because both the lon-

gitudinal marker (LM) and recurrent competing risks (RCR) are associated with the

TE, a frailty variable is introduced to model the between-process dependence. The

frailty variable also induces association between the RCR and TE. By modeling the

dependence structure among the processes, we hope that the joint dynamic model

will strengthen the analyses of the LM, RCR and TE. Additionally, built upon the

joint dynamic model of RCR and TE in Chapter 2 and Chapter 3, the proposed

model contributes to research in joint modeling by allowing the intensity process of

recurrent competing risks evolve while taking into consideration of the impact of past

event history, and the possible impact of interventions. Parameter estimation proce-

dure is proposed and demonstrated on a simulated dataset. Areas of applications of

5
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the model include but not limited to biomedical, clinical and reliability type of re-

search. The dynamic aspect of the model will make the model applicable in precision

medicine. We conclude the dissertation in Chapter 5 with some remarks and future

studies.

6
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Chapter 2

Joint Dynamic Modeling of Recurrent

Competing Risks and a Terminal Event

2.1 Introduction

A General Class of Dynamic Models

In [45] and [44], nonparametric estimation procedures and asymptotic properties of

estimators of recurrent event data are introduced. The papers extended the approach

that make use of the martingale property of a counting process to estimate the inten-

sity process. A Nelson-Aalen type of estimator is described to estimate the baseline

hazard and a Kaplan-Meier type of estimator is described to estimate the baseline

survival functions.

To incorporate possible interventions after each recurrent event occurrence and

impact of covariate information, a general class of dynamic models for recurrent event

data was proposed in [42]. Baseline hazard of the intensity process are estimated using

estimators in [45] and [44] and captures the dynamic nature of the relevant stochastic

processes as time passes. A comprehensive review about this class of dynamic models

can be found in [41]. A general class of semi-parametric models of recurrent event

data is also developed in [43].

7
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Figure 2.1: Data of a Single Unit Observed Under Perfect Repair ( Left: Data of a
Single Unit Right: Effective Ages of Competing Risks under Perfect Repair)

Effective Age

Effective age processes can be used to model impact of interventions (cf. [20]). An

intervention could be repair of failed machine components, or surgery doctors perform

on a patient to treat certain diseases. Since there are multiple recurrent competing

risks involved in our joint model, the effective age processes are risk-specific. Sup-

pose the qth risk of unit i is observed to experience j = 1, 2, · · · , N †
qi(s−) events on

monitoring interval [0, s]. An effective age process is a process whose sample paths

are nonnegative, increasing, left-continuous, and differentiable on the time interval

between two successive event occurrences (Sj−1, Sj]. For the proposed joint model,

we consider the following two kinds of effective age processes

Eq(v)P ER = v − SN†
•(v−); Eq(v)P AR = v − SqN†

q (v−)

In Figure 2.1, event occurrences are plotted for a single observational unit under

perfect repair where Q = 4. After an event happens, interventions take place. Under

perfect repair, effective ages are set to 0 for all recurrent competing risks. Therefore,

all units start anew after each event occurrence. In Figure 2.2, data are plotted for

8
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Figure 2.2: Data of a Single Unit Observed Under Partial Repair ( Left: Data of a
Single Unit Right: Effective Ages of Competing Risks under Partial Repair)

a single observational unit under partial repair. In this case, an intervention only

happens to the risk to which an event has just happened. Resetting effective age to

0 does not happen to other risks. Notice that the first event under partial repair is

risk 4, and the right panel of Figure 2.2 indicates that only risk 4 resets its effective

age to 0.

Some Stochastic Processes

Let (Ω,F, P) be some probability space. Define F = {Fs|0 ≤ s ≤ s∗} a history or

filtration on the same probability space. N †
qi(s) and N †

0i(s) are counting processes and

Y †
i (s) are predictable processes with respect to F. For the ith unit, we first describe

the stochastic processes:

1. {N †
qi(s) : s ≥ 0}: counting process for the qth competing risk.

2. {N †
0i(s) : s ≥ 0}: counting process for the terminal event.

3. {Y †
i (s) : s ≥ 0}: at-risk process.
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4. {Eqi(s) : s ≥ 0}: the effective age process.

2.2 Data

For i = 1, 2, · · · , n, the observables are

Di = {(N †
qi(s), N †

0i(s), Y †
i (s),Eqi(s)) : s ≥ 0, Xi, τi}.

τi is the subject specific random censoring time. We assume that τi is independent of

N †
qi(s) and N †

0i(s). In Figure 2.3, observations for 50 independent units are plotted.

All observed Q recurrent competing risks for each unit are plotted on the same line

using different colored symbols. Censoring is indicated using a green cross and a red

cross is employed to show when a unit experiences the terminal event by the end of

the monitoring period.

For the ith unit, and q = 1, 2, · · · , Q, our proposed model is

Lc(v, Θ) ≡ P


Q∩

q=1
[dN †

qi(v) = dnqi(v)]; [dN †
0i(v) = dn0i(v)]|Fv−


=


Q∏

q=1
[dAqi(v)]dnqi(v)[1 − dAqi(s)]1−dnqi(v)


×

{
[dA0i(v)dn0i(v)[1 − dA0i(v)]1−dn0i(dv)

}
(2.1)

with

A†
qi(s) =

∫ t

0
Y †

i (v)ρq(N†
i (v−); αq) exp(Xiβq)λq0(Eqi(v))dv

A†
0i(s) =

∫ s

0
Y †

i (v)ρ0(N†
i (v−); γ) exp(Xiβ0)λ0(v)dv

(2.2)

where dnqi(v), dn0i(v) ∈ {0, 1} and ∑Q
q=1 dnqi(v) + dn0i(v) ≤ 1. And N†

i (v−) =(
N †

1i(v−), N †
2i(v−), · · · , N †

Qi(v−)
)T

is a Q × 1 vector of recurrent competing risks,

{Eqi(s) : s ≥ 0} is the effective age process, and Xi is a p × 1 fixed covariate vector.

10
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Figure 2.3: An example of a data set with recurrent competing risks and a terminal
event for n = 50 subjects and Q = 4 types of competing recurrent events. The four
different colored symbols other than ‘×’ and ‘+’ indicate occurrences of the different
recurrent competing risks. A symbol ‘×’ indicates occurrence of the terminal event,
whereas a ‘+’ indicates that the terminal event is not observed but instead τ , the
time of the end of the monitoring period, is observed, so the terminal event time is
right-censored.

For ease of notation, we also define the following

a†
qi(v)dv =Y †

i (v)ρq(N†
i (v−); αq) exp(Xiβq)λq0(Eqi(v))dv (2.3)

a†
0i(v)dv =Y †

i (v)ρ0(N†
i (v−); γ) exp(Xiβ0)λ0(v)dv (2.4)

2.3 Model Description

Let Θ(nofrail) be the vector of unknown parameters. On [0, s∗], unknown parameters

of infinite dimensions Λq0(s) and Λ0(s) are the cumulative baseline hazards for the

recurrent competing risks, and the terminal event, respectively. The Θ(nofrail) vector

11
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is

Θ(nofrail) ={γ, β0, (αq, βq; q = 1, 2, · · · , Q)}

∪{(Λq0(s), q = 1, 2, · · · , Q), Λ0(s)|0 ≤ s ≤ s∗}
(2.5)

where for q = 1, 2, · · · , Q, γ and αq are Q×1 vectors; and β0 and βq are p×1 vectors.

Consequently, the full likelihood of the model of n observational units is

LF (Θ, s) =
n∏

i=1

s∏
v=0

P{
Q∩

q=1
[dN †

qi(v) = dnqi(v)]; [dN †
0i(v) = dn0i(v)]|Fv−} (2.6)

Another important dynamic aspect of the joint model is to include impact of past

event occurrences on the intensity process. Existing work has shown the significance of

past event occurrences on the recurrent competing risks (cf. Latouche et. al (2015)).

It is reasonable to assume that high event occurrences of certain risk right before time

t increases the chance of a new event happening during a small time interval [t, t+dt)

conditional on Ft−. The ρ functions ρq and ρ0 incorporate the impact of past event

occurrences into the intensity processes for a single unit are

ρq(N†
i (t−); αq) = 1 + N†

i (t−)αq

ρ0(N†
i (t−); γ) = exp(N†

i (t−)T γ)
(2.7)

The γ are Q × 1 vectors of coefficients. One may interpret the αq coefficients as

follows: if αq > 0, past event occurrences increases the instantaneous probability

of a new event for the qth risk; if αq < 0, past event occurrences decreases the

instantaneous probability of a new event occurrence for the qth risk; when αq = 0,

past event occurrences does not impose further impact on the qth risk’s instantaneous

probability. Elements of vector γ have similar interpretations of their impact on the

intensity process of the terminal event.

12
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2.4 Parameter Estimation

Generalized At-risk Process

The observable effective age processes for the Q risks are {Eq(s) : s ≥ 0}, q =

1, 2, · · · , Q. In [44], a doubly-indexed process is defined to utilize the martingale

approach in [1] and [19]. The paper extends work in [54] and proposes a doubly-

indexed process as in equation 2.8 operating on both the calendar times and gap

times. To make inferences about Λq0(s) at any given calendar time s ≥ 0 instead

of Λq0(Eqi(s)), we adopt the doubly-indexed process approach. Under this frame-

work, we define doubly-indexed processes for stochastic processes N †
q (s), M †

q (s) and

A†
q(s), s ≥ 0, q = 1, 2, · · · , Q:

Therefore, for unit i, the stochastic processes become

Zqi(s, t) = I{Eqi(s) ≤ t} (2.8)

Nqi(s, t) =
∫ s

0
I(Eqi(v) ≤ t)N †

qi(dv) =
∫ s

0
Zqi(v, t)N †

qi(dv) (2.9)

Aqi(s, t) =
∫ s

0
I(Eqi(v) ≤ t)A†

qi(dv) =
∫ s

0
Zqi(v, t)A†

qi(dv) (2.10)

Mqi(s, t) = Nqi(s, t) − Aqi(s, t) =
∫ s

0
Zqi(v, t)M †

qi(dv) (2.11)

To estimate baseline hazards, we also derive a doubly-indexed process for each

at-risk process:

Proposition 1.

Yqi(s, w) =

N†
qi

(
(s∧τi)−

)
+1∑

j=1
I

{
w ∈

(
Eqi(Sij−1),Eqi(Sij)

]} κqi(E−1
qij(w))

E
′
qi(E−1

qij(w))
,

where κqi(E−1
qij(w)) = ρq(N †

qi(E−1
qij(w)−); αq) exp(XT

i βq), and E−1
qij(.) is the inverse of

Eqij(v) = Eqi(v)I {v ∈ (Sij−1, Sij]} .

13
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A Semiparametric Approach

In this section, we develop a semi-parametric inference procedure to estimate Θ(nofrail).

We first obtain expressions for baseline hazards given finite-dimensional parameters.

Note that Mqi(s, t) in section 2.4 is a martingale with respect to calendar time s

given an effective age t. For a doubly-indexed counting process Nqi(s, t), we obtain

an identity

Mqi(s, t) = Nqi(s, t) −
∫ t

0
Yqi(s, w)Λq0(dw)

Summing over all units, we obtain
n∑

i=1
Mqi(s, dw) =

n∑
i=1

Nqi(s, dw) −
n∑

i=1
Yqi(s, w)Λq0(dw)

Since E[∑n
i=1 Mqi(s, dw)] = 0, we have E [∑n

i=1 Nqi(s, dw)] = E [∑n
i=1 Yqi(s, w)Λq0(dw)].

Define the aggregated at-risk process for q = 1, 2, · · · , Q as

Sq0(s, w|αq, βq) =
n∑

i=1
Yqi(s, w|αq, βq)

=
n∑

i=1

N†
qi[(s∧τi)−]+1∑

j=1
I[w ∈

(
Eqi(Sij−1),Eqi(Sij)

)
]
κqi(E−1

qij(w))
E

′
qi(E−1

qij(w))

where κqi(E−1
qij(w)) = ρq(N †

qi(E−1
qij(w)−); αq) exp(XT

i βq).

Consequently, given the finite - dimentional parameters, an Aalen-Nelson type of

“estimator" for recurrent competing risks cumulative baseline hazards is

Λ̂q0(s, t|αq, βq) =
∫ t

0

∑n
i=1 Nqi(s, dw)

Sq0(s, w|αq, βq)
(2.12)

The expression of Λ̂q0(s, t|αq, βq) above involves unknown parameters αq and βq.

Therefore, to obtain the cumulative baseline hazard estimator, the unknown finite-

dimensional parameters are to be estimated, and then plugged in the expression in

2.12. For the terminal event process, since no effective age is involved

M †
i (s) = N †

i (s) −
∫ s

0
Y †

i (t)λ0(t)ρ0(N†
i (t−); γ) exp(XT

i β0)dt

= N †
i (s) −

∫ s

0
Y †

i (t)ρ0(N†
i (t−); γ) exp(XT

i β0)Λ0(dt)

14
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We also define the aggregated at-risk process as

S0(v|γ, β0) =
n∑

i=1
Y †

i (v|γ, β0) =
n∑

i=1
I[(τi ∧ Si) ≥ v]κ0i(v)

where κ0i(v) = ρ0(N †
i (v−); γ) exp(XT

i β0) with Si being time-to-terminal event. Given

the finite-dimentional parameter, we obtain an Aalen-Nelson type of “estimator" for

the terminal event cumulative baseline hazard

Λ̂0(t|γ, β0) =
∫ t

0

∑n
i=1 N †

0i(dv)
S0(v|γ, β0)

(2.13)

Similar to Λ̂q0(s, t|αq, βq) in equation 2.12, Λ̂0(t|γ, β0) will be considered as an esti-

mator after estimates of the finite-dimensional parameters are computed and plugged

in the above expression.

Define Ti = min(τi, Si), to estimate the finite-dimentional parameters, we ob-

tain the partial likelihood process by substituting baseline hazards expressions using

equation 2.12 and equation 2.13 in the full likelihood (see equation 2.6).

Lp(Θ) =
n∏

i=1

{ Q∏
q=1

N†
qi(τi)∏
j=1

[
κqi(Sij)

Sq0(s,Eqi(Sij)|αq, βq)

]dN†
qi(Sij)}

×
{[

κ0i(Ti)
S0(Ti|γ, β0)

]dN†
0i(Ti)}

Estimating equations of finite-dimensional parameters are

∑n
i=1

∫ τi
0

[ ∂
∂αq

ρq(N†
qi(v−);αq))

ρq(N†
qi(v−);αq))

−
∂

∂αq
Sq0(s,Eqi(v)|αq ,βq)

Sq0(s,Eqi(v)|αq ,βq)

]
N †

qi(dv) = 0

∑n
i=1

∫ τi
0

[
Xi −

∂
∂βq

Sq0(s,Eqi(v)|αq ,βq)
Sq0(s,Eqi(v)|αq ,βq)

]
N †

qi(dv) = 0

∑n
i=1

∫ τi
0

[
∂

∂γ
ρ0(N†

i (v−);γ)
ρ0(N†

i (v−);γ)
−

∂
∂γ

S0(v|γ,β0)
S0(v|γ,β0)

]
N †

0i(dv) = 0

∑n
i=1

∫ τi
0

[
Xi −

∂
∂β0

S0(v|γ,β0)
S0(v|γ,β0)

]
N †

0i(dv) = 0

To solve for finite-dimensional parameters, we implement a Newton-Ralphson al-

gorithm. PLEs of the recurrent competing risks (q = 1, 2, · · · , Q) and terminal event

processes of baseline survivor functions are

ˆ̄Fq0(s, t) =
t∏

w=0
[1 − Λ̂q0(s, dw)]; ˆ̄F0(t) =

t∏
w=0

[1 − Λ̂0(dw)]
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Figure 2.4: A Simulated Data Set For Estimation (No-Frailty): n = 100

2.5 Parameter Estimates on a Simulated Dataset

We implement the parameter estimation procedure on a simulated dataset shown in

Figure 2.4. Table 2.1 displays true parameters used to generate the dataset. Results

of the proposed estimation procedure are shown in Table 2.2. Survival functions of the

baseline hazards are also plotted in Figure 2.5. The red curves are the true survival

functions while the blue colored wiggly curves are estimates.

In this demonstration, we used a more simplified model for the ρ functions in

equations 2.2, wherein αq = (αqI{q = j}, j = 1, 2, · · · , 4), for q = 1, 2, · · · , 4, that is,

all elements are zeros except for the qth position. As such the parameter was simply

identified as α = (α1, α2, α3, α4).
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Table 2.1: Parameters of Simulated Dataset For Parameter Estimation

Risk(q) αq βq κs
q λq

TE (0) (0.1, 0.1, 0.05, 0.5) (0.3, -0.4, 0.5) 2 0.4
1 0.25 (-0.2, 0.1, 0.3) 1 2
2 0.2 (0.3, 0.1, 0.05) 2 3
3 0.1 (0.3, -0.1, 0.4) 0.5 5
4 0.05 (0, 1, -0.5) 1.5 4

Table 2.2: Finite-Dimensional Paramester Estimates (with No-Frailty)

Risk(q) α̂q β̂q

TE (0) (0.09, 0.37, 0.04, 0.41) (0.20, -0.14, 0.57)
1 0.18 (0.03, 0.19, 0.21)
2 0.09 (0.24, 0.02, 0.00)
3 0.09 (0.19, -0.07, 0.38)
4 0.06 (-0.15, 1.08, -0.55)
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Figure 2.5: PLE Survival Functions of Baseline Hazards (No-frailty)
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Figure 2.6: Overlaid plots of simulated PL estimates of the baseline survivor functions
for the recurrent competing risks under the no-frailty model.

2.6 A Small Simulation Study

To understand the large/finite-sample properties of the estimators, we perform a sim-

ulation study from m = 500 repeated data samples. In the simulation study the model

parameters were Q = 4 recurrent competing risks, p = 3 covariates with X1 ∼ Ber(.5)

and (X2, X3) ∼ BV N(0, 0, 1, 1, ρ = .5), and with partial type effective ages. To gen-

erate the simulation data, the baseline hazard functions for the recurrent competing
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Figure 2.7: Overlaid plots of simulated PL estimates of the baseline survivor function
for the terminal event portion under the no-frailty model (PL Estimates with True
SF and Mean Curve of Estimates)
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Figure 2.8: Boxplot of Finite Dimensional Parameter Estimates from 500 Data Sam-
ples
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risks and terminal event are Weibull hazard functions with shape parameters and

scale parameters shown in Table 2.1. The Weibull distribution of the terminal event

baseline hazard function has shape parameter κ0 = 2 and scale λ0 = 0.4. However,

The proposed joint dynamic model is semiparametric in nature. The baseline hazards

of RCR and TE are left unspecified in the model, and the cumulative baseline hazards

are estimated nonparametrically. Therefore, the shape and scale parameters associ-

ated with the Weibull distributions are not an interest of the parameter estimation,

and the Weibull distribution are used for the purpose of data generation.

For the PLE of baseline hazard, q = 1, 2, · · · , Q, Figure 2.6 depicts overlaid plots

of the PL estimates of the baseline survivor functions for each of the four recurrent

competing risks. Recall that the true baseline survivor functions are of the Weibull

type. These are indicated by the red-colored curves, while the blue-colored curves

represent the mean of the 500 estimates, respectively. The green curves represent

the two standard deviation curves from the mean curve with the standard deviation

computed from the 500 replicates. Note the close agreement between the true curve

and the mean curve. Figure 2.7 presents the overlaid plot of PL estimates for the

baseline survivor function for the terminal event portion. Again, the true curve is of a

Weibull-type and note the close agreement between the true curve (red) and the mean

curve (blue). Figure 2.8 is the boxplot of finite-dimensional parameter estimates of

the 500 samples from the population. Observe that the mean of the estimates are

close to their true values. We also observe that the standard errors of the estimates

of parameters for the third recurrent competing risk are smaller than those for the

other risks. This is because there were more event occurrences for this risk.

We also plot histograms of the 500 estimates for each estimator. Figure 2.9 and

2.10 display the histograms. The green colored bars indicate the average of the 500

replicates. Theoretical investigation of large sample properties of the estimators will

be pursued in the future.

21



www.manaraa.com

ALPHA1[q=1]

Estimate

F
re
q
u
e
n
cy

0.0 1.0

0
5
0

1
0
0

1
5
0

ALPHA1[q=2]

Estimate

F
re
q
u
e
n
cy

−0.2 0.2 0.6

0
2
0

4
0

6
0

8
0

1
2
0

ALPHA1[q=3]

Estimate

F
re
q
u
e
n
cy

0.05 0.15
0

5
0

1
0
0

1
5
0

ALPHA1[q=4]

Estimate

F
re
q
u
e
n
cy

−0.1 0.1 0.3

0
5
0

1
0
0

1
5
0

GAMMA[q=1]

Estimate

F
re
q
u
e
n
cy

−0.6 0.0 0.6

0
2
0

4
0

6
0

8
0

1
2
0

GAMMA[q=2]

Estimate

F
re
q
u
e
n
cy

−0.5 0.5

0
5
0

1
0
0

1
5
0

GAMMA[q=3]

Estimate

F
re
q
u
e
n
cy

0.00 0.10 0.20

0
5
0

1
0
0

1
5
0

2
0
0

GAMMA[q=4]

Estimate

F
re
q
u
e
n
cy

0.2 0.6 1.0

0
2
0

6
0

1
0
0

1
4
0

Figure 2.9: Histogram of Parameter Estimates From 500 Data Samples (Estimates of
Unknown Parameters In the ρ Functions)
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Figure 2.10: Histogram of Parameter Estimates From 500 Data Samples (Estimates
of Unknown Parameters Associated With the Covariates)
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Figure 2.11: Past Event Occurrences of New Unit 0 Under Partial Repair

2.7 Predictions of Terminal Event Survival Probabilities

A major goal of joint dynamic modeling is to predict terminal event survival proba-

bilities for a new unit 0 incorporating information from past recurrent competing risk

occurrences. When the statistical inference procedure of the proposed joint dynamic

modeling approach is implemented, parameter estimates are obtained. For a new

unit 0 that has not experienced the terminal event, shown in Figure 2.11, we propose

a simulation approach to predict time-to-terminal event survival probabilities. For

illustration purposes, we use the no-frailty case under partial repair as an example.

A single new unit 0 that has survived the monitoring period is considered for

the prediction problem. In Figure 2.12, 500 paths of terminal event times, which
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Figure 2.12: Predicted Terminal Event Times (No-frailty, Partial Repair, 500 Paths)

Table 2.3: Mean, Median and SD of Predicted Residual TE Times Under Partial
Repair

Mean Median S.E
0.531 0.524 0.224

Table 2.4: Simulated TE Survival Probabilities

Time 0.169 0.393 0.618 0.843 1.067
Probabilities 0.968 0.758 0.400 0.070 0.016

starts from the end of the monitoring time τ , are simulated. Past event occurrences,

and parameter estimates are considered when generating the paths. Distribution of

such simulated survival times is plotted in the left panel of the plot while survival

probabilities are plotted in the right panel in Figure 2.12.

We compute terminal event survival probabilities using the 500 simulated paths.

In medical research, or cancer prognostics, these terminal event probabilities will pro-

vide predictions taking into account an individual patient’s past event history. Table

2.3 summarizes the simulated residual lifetimes, and Table 2.4 provides predicted

survival probabilities for the new unit 0 after the end of monitoring period τ.
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Chapter 3

Joint Dynamic Modeling of Recurrent

Competing Risks and A Terminal Event With

Frailty

3.1 Introduction

In real-life applications, recurrent competing risks observed from the same unit are

often correlated. However, factors contributing to such associations are usually unob-

served. To account for these unobserved factors, a latent variable Z is introduced to

induce associations between different recurrent competing risks described in section

2.1. In reliability and survival analysis literature, this unobserved Z variable is called

a frailty. Many previous models have assumed Z to follow a gamma distribution. We

adopt such an assumption in our models and assume Z ∼ Ga(ξ, ξ), ξ > 0, avoiding

identifiability issues. Note that when ξ → ∞ , the model is identical to the model in

Chapter 2 .

3.2 Data

Frailty variable Z is unobserved. The observables of the frailty model are the same

as those in Chapter 2. Di = {(N †
qi(s), N †

0i(s), Y †
i (s),Eqi(s)) : s ≥ 0, Xi, τi}, i =

1, 2, · · · , n. τi is the subject specific random censoring time. We assume that τi is

independent of N †
qi(s) and N †

0i(s).
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3.3 Model Description

To include the frailty variable in the joint dynamic models developed in Chapter

2, we specify the intensity processes as follow: For the ith observational unit, and

q = 1, 2, · · · , Q, the intensity processes are

A†
qi(s|Zi) = Zi

∫ t

0
Y †

i (v)ρq(N†
i (v−); αq) exp(Xiβq)λq0(Eqi(v))dv

A†
0i(s|Zi) = Zi

∫ s

0
Y †

i (v)ρ0(N†
i (v−); γ) exp(Xiβ0)λ0(v)dv

For ease of notation, we also define the following

a†
qi(v|Zi)dv =ZiY

†
i (v)ρq(N†

i (v−); αq) exp(Xiβq)λq0(Eqi(v))dv

a†
0i(v|Zi)dv =ZiY

†
i (v)ρ0(N†

i (v−); γ) exp(Xiβ0)λ0(v)dv

(3.1)

Incorporating the frailty variable Z into the likelihood from Section 2.2, and con-

ditional on Zi, the likelihood of the frailty case for the ith unit is

Lc(v, Θ|Zi) ≡
s∏

v=0
P{

Q∩
q=1

[dN †
qi(v) = dnqi(v)]; [dN †

0i(v) = dn0i(v)]|Fv−, Zi}

= {
Q∏

q=1
[dAqi(v|Zi)]dnqi(v)[1 − dAqi(v|Zi)]1−dnqi(v)}

× {[dA0i(v|Zi)]dn0i(v)[1 − dA0i(v|Zi)]1−dn0i(v)}

where dnqi(v), dn0i(v) ∈ {0, 1} and ∑Q
q=1 dnqi(v) + dn0i(v) ≤ 1.

3.4 Parameter Estimation

Impact of Frailty Z

Similar to the no-frailty case, parameters are estimated semi-parametrically. The

impact of frailty Z with regards to estimation is seen in the aggregated generalized

at-risk processes. For the recurrent competing risks processes, we define some new
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aggregated generalized at-risk processes. For q = 1, 2, · · · , Q,

Sq0(s, w|αq, βq, z) =
n∑

i=1
Yqi(s, w|αq, βq, zi)

=
n∑

i=1

N†
qi[(s∧τi)−]+1∑

j=1
ziI[w ∈

(
Eqi(sij−1),Eqi(sij)

)
]
κqi(E−1

qij(w))
E

′
qi(E−1

qij(w))

where κqi(E−1
qij(w)) = ρq(N †

qi(E−1
qij(w)−); αq) exp(XT

i βq). For the terminal event pro-

cess,

S0(v|γ, β0, z) =
n∑

i=1
Y †

i (v|γ, β0, zi) =
n∑

i=1
ziI[(τi ∧ Si) ≥ v]κ0i(v)

where κ0i(v) = ρ0(N†
i (v−); γ) exp(XT

i β0) with Si being time-to-terminal event. Fol-

lowing the approach in [44], given values of the finite-dimensional parameters and

frailty Z = z, we estimate baseline hazards of the recurrent competing risks and the

terminal event with frailty using the expressions below

Λ̂q0(s, t|z, αq, βq) =
∫ t

0

∑n
i=1 Nqi(s, dw)

Sq0(s, w|z, αq, βq)
; Λ̂0(t|z, γ, β0) =

∫ t

0

∑n
i=1 N †

0i(dv)
S0(v|z, γ, β0)

.

(3.2)

Plugging in the estimates of the finite-dimensional parameters, the PLEs of the base-

line survival functions of the recurrent competing risks (q = 1, 2, · · · , Q) and the

terminal event processes, conditional on Z = z, are

ˆ̄Fq0(s, t|z) =
t∏

w=0
[1 − Λ̂q0(s, dw|z)]; ˆ̄F0(t|z) =

t∏
w=0

[1 − Λ̂0(dw|z)].

An EM Algorithm

We develop an EM algorithm (cf. [12]) to estimate the finite-dimensional parame-

ters. With the introduction of frailty Z, the vector of unknown parameters becomes

Θ = Θ(nofrail) ∪ {ξ} in the frailty case. Assuming Z = z is known, we obtain the full

likelihood process as below
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L†[s∗|Θ, Z = z, D(s∗)] = ∏n
i=1

{
ξξ

Γ(ξ)z
ξ−1
i exp(−ξzi)

×
s∗∏

v=0

Q∏
q=1

(
ziY

†
i (v)λq0(Eqi(v))ρq

[
N †

qi(v−); αq

]
exp(XT

i βq)
)N†

qi(dv)

× exp
(

−
∫ s∗

0
ziY

†
i (v)λq0(Eqi(v))ρq

[
N †

qi(v−); αq

]
exp(XT

i βq)dv
)

×
(

ziY
†

i (v)λ0(v)ρ0[N†
i (v−); γ] exp(XT

i β0)
)N†

i (dv)

× exp
(

−
∫ s∗

0
ziY

†
i (v)λ0(v)ρ0

[
N†

i (v−); γ
]

exp(XT
i β0)dv

)}

To compute conditional distribution of Zi, i = 1, 2, · · · , n, we use the fact that

Z|Θ, D(s∗) ∝ L†[s∗|Θ, Z = z, D(s∗)]
n∏

i=1
f(Zi|ξ).

We then obtain Zi|D(s∗), Θ iid∼ Ga(α, β), with

α(s∗) = ξ +
Q∑

q=1
N †

qi(s∗−) + N †
0i(s∗−)

β(s∗) = ξ +
Q∑

q=1

∫ s∗

0
A†

qi(dv) +
∫ s∗

0
A†

0i(dv)

For i = 1, 2, · · · , n, the conditional expectation of Zi|D(t), Θ is

E[Zi|Ft−, Xi, Θ] = α(t)
β(t)

=
ξ + ∑Q

q=1 N †
qi(t−) + N †

0i(t−)
ξ + ∑Q

q=1
∫ t

0 A†
qi(dv) +

∫ t
0 A†

0i(dv)

E[log(Zi)|Ft−, Xi, Θ] = DG(ξ +
Q∑

q=1
N †

qi(t−) + N †
0i(t−))

+ log[E{Zi|Ft−, Xi, Θ}] − log(ξ +
Q∑

q=1

∫ t

0
A†

qi(dv) +
∫ t

0
A†

0i(dv))

where DG(α) = d
dα

log Γ(α).

The EM algorithm is described as follows:
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E-step: Obtain conditional expectation of the full log-likelihood with respect to

Z|(D(t−), Θ). Let

Ẑi = E[Zi|Ft−, Xi, Θ]; l̂ogZi = log(E[Zi|Ft−, Xi, Θ])

E(logL†
c[s∗|Θ, Z, D(s∗)) = nξ log ξ − n log Γ(ξ)

+
n∑

i=1
l̂ogZi(

Q∑
q=1

N †
qi(s∗) + N †

0i(s∗) + ξ − 1)

−
n∑

i=1
Ẑi

(
ξ +

∫ s∗

0
[

Q∑
q=1

A†
qi(dv) + A†

0i(dv)]
)

+
n∑

i=1

( Q∑
q=1

∫ s∗

0
log a†

qi(v)N †
qi(dv) +

∫ s∗

0
log a†(v)N †

0i(dv)
)

M-step: When values of the finite-dimensional parameters in Θ and the frailty

variables Z are given, baseline hazards of the recurrent competing risks and the

terminal event can be estimated non-parametrically as in 3.4. Small changes to

the estimating equations are needed to incorporate the frailty variable. For αq and

βq, q = 1, 2, · · · , Q :

∑n
i=1

∫ τi
0

[ ∂
∂αq

ρq(N†
qi(v−);αq))

ρq(N†
qi(v−);αq))

−
∂

∂αq
Sq0(s,Eqi(v)|αq ,βq ,z)

Sq0(s,Eqi(v)|αq ,βq ,z)

]
N †

qi(dv) = 0

∑n
i=1

∫ τi
0

[
Xi −

∂
∂βq

Sq0(s,Eqi(v)|αq ,βq ,z)
Sq0(s,Eqi(v)|αq ,βq ,z)

]
N †

qi(dv) = 0

For γ and β0:

∑n
i=1

∫ τi
0

[
∂

∂γ
ρ0(N†

i (v−);γ)
ρ0(N†

i (v−);γ)
−

∂
∂γ

S0(v|γ,β0,z)
S0(v|γ,β0,z)

]
N †

0i(dv) = 0

∑n
i=1

∫ τi
0

[
Xi −

∂
∂β0

S0(v|γ,β0,z)
S0(v|γ,β0,z)

]
N †

0i(dv) = 0

We follow the algorithm described below to estimate all parameters:

1. Initialize Ẑ
(0)

= 1n×1, α̂(0)
q , β̂(0)

q , γ̂(0), β̂
(0)
0 .

2. Obtain Λ̂(0)
q0 (.), q = 1, 2 · · · , Q and Λ̂(0)

0 (.).

3. Update to Ẑ
(1)

using {Λ̂q0(.), α̂(0)
q , β̂(0)

q , q = 1, 2, · · · , Q; γ̂(0), β̂
(0)
0 , Λ̂0(.)}.
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Table 3.1: Finite-Dimensional Parameter Estimates (with Frailty)

Risk(q) α̂q β̂q

TE (0) (0.29, 0.27, 0.04, 0.51) (-0.01, -0.41, 0.75)
1 -0.02 (0.28, -0.09, 0.44)
2 0.24 (0.40, -0.01, 0.19)
3 0.10 (0.42, -0.21, 0.59)
4 0.07 (0.18, 0.77, -0.41)

4. Obtain ξ̂(0). Define Lξ[s∗|Θ, D(s∗)] = E(logL†
c[s∗|Θ, Z, D(s∗)) as in the E step.

ξ̂ = arg max(ξ) Lξ[s∗|Θ(0), D(s∗)].

5. With Ẑ
(1)

, Λ̂(0)
q0 (.) and Λ̂(0)

0 (.), we obtain α̂(1)
q , β̂(1)

q , γ̂(1), β̂
(1)
0 .

6. Reset Ẑ
(1)

to Ẑ
(0)

, α̂(1)
q , β̂(1)

q , γ̂(1), β̂
(1)
0 to α̂(0)

q , β̂(0)
q , γ̂(0), β̂

(0)
0 .

Repeat steps 2 - 5 until |(Z(0), Θ(0)) − (Z(1), Θ(1))| < tol. For example, tol = 10−7.

The convergence criterion only applies to the finite-dimensional parameters in Θ.

3.5 Parameter Estimates on a Simulated Dataset

Using the same parameters in Table 2.1, we simulate a second dataset to illustrate

the estimation procedure in Section 3.4. ξ, the parameter of frailty variable Z is set

to be 2. Hence, frailty variable vector Z are generated using Gamma(2, 2).

ξ̂, the estimate of ξ is 2.767. Estimates of other finite-dimensional parameters are

displayed in Table 3.1. Estimates of baselines of the survival functions are plotted in

Figure 3.1.

3.6 A Small Simulation Study

In this small simulation study, we simulated m = 50 datasets with sample size n = 30.

The simulation setup is the same as in Section 2.5. Parameters in Table 2.1 are

used to generate the data. Assuming a Ga(ξ, ξ) over the frailty variable Zi, i =

1, 2, · · · , 30, ξ = 2 is used in data generation. Simulation results are presented in this

section.
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Figure 3.1: Left: PLE Survival function of Recurrent Competing Risks; Right: PLE
Survival function of Terminal Event

In Figure 3.2, for the qth recurrent competing risk, q = 1, 2, · · · , 4, 50 estimates of

the baseline survival function are plotted using the simulated datasets. Recall the true

survival function of the baseline hazard of the recurrent competing risks is generated

using a Weibull distribution. Red curves represent the true survival functions. The

mean of the 50 estimates are indicated using the blue curves, and standard deviations

of the 50 replicates are also computed. The green curves are two standard deviations

of the mean curves. According to the plots, the four blue mean curves are very close

to the truth, and most of the estimates are within two standard deviations of the

mean curves. In Figure 3.3, 50 estimates of the terminal event baseline hazard are

plotted. The red curves represent the true Weibull baseline survival probabilities, and

the blue curves are the mean of the 50 replicates. The green curves are two standard

deviations of the mean curves, where the standard deviation is calculated using the

50 replicates.

In Figure 3.4, boxplots of the 50 centered estimates of the finite-dimensional pa-

rameters are created for the recurrent competing risks. For every estimator, the mean

of the 50 replicates is approximately 0; and standard errors vary across different es-

32



www.manaraa.com

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Baseline PLE for Risk  1

Time

P
L
E

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Baseline PLE for Risk  2

Time

P
L
E

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Baseline PLE for Risk  3

Time

P
L
E

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Baseline PLE for Risk  4

Time

P
L
E

Figure 3.2: Overlaid plots of simulated PL estimates of the baseline survivor functions
for the recurrent competing risks under the frailty model.
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Figure 3.3: Overlaid plots of simulated PL estimates of the baseline survivor function
for the terminal event portion under the frailty model (PL Estimates with True SF
and Mean Curve of Estimates)
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Figure 3.5: Histogram of simulated ξ estimates under the frailty model.
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timators. For example, standard errors of the estimators associated with q = 3 RCR

tend to be smaller compared to other risks. One possible explanation may be that the

risk experiences more event occurrences. Therefore, there is more information about

the risk. This is similar to what is observed in Section 2.5. In Figure 3.5, histogram

of the ξ estimates is plotted. The blue vertical line represents the mean of the 50 ξ

estimates, which is slightly larger than the true value of 2. The true parameter value

of ξ is represented using a red vertical line.

A larger scale simulation study is necessary and will be performed in the future.

However, from these modest results we see that the estimation procedure for the

model with frailties appear to be working.
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Chapter 4

Semiparametric Joint Dynamic Models for

Longitudinal Markers, Correlated Recurrent

Competing Risks, and a Terminal Event

4.1 Introduction

Dependence structure of correlated longitudinal marker and time-to-event data has

been a key interest of research under the joint modeling framework (cf. [4], [7], [52]).

Recent literature provided examples where the profile of the longitudinal marker is

modeled, and the rate of time-to-event processes takes into account past history of

the longitudinal marker (cf. [27]). Other works often use a shared random effect

(cf. [36]) or latent classes (cf. [22]) when modeling possible association between

the marker process and time-to-event data. In this Chapter, we tackle the problem

Figure 4.1: Dependence Structure of the LM, RCR and TE
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of simultaneously modeling a longitudinal marker (LM), recurrent competing risks

(RCR) and a terminal event (TE). The proposed joint dynamic models continue to

consider effective age processes and the two types of repair, which are considered in

Chapter 2 and Chapter 3, for the RCR and TE submodels. Figure 4.1 is a pictorial

representation of the dependence structure of the data. The solid blue arrows indicate

the possible dependence between LM and RCR, RCR and TE, or LM and TE; and

the dotted lines connecting frailty variable Z to indicate possible associations between

the different processes due to the unobserved random variable. Fixed covariate vector

X1 contribute to the mean of the LM, and X2 is the fixed covariate that contribute

to intensity processes of the RCR and TE.

4.2 Data

For the ith unit from the population, Wi(tij) is the value of the continuous longitudinal

marker (LM) at time tij, i = 1, 2, · · · , n; j = 1, 2, · · · , mi. The recurrent competing

risks (RCR) and terminal event (TE) are observed. Xi1 is the fixed p1 × 1 covariate

vector contributing to the mean of LM, which may be gender, and demographic

characteristics associated with the unit. Xi2 is the fixed p2 × 1 covariate vector

contributing to the intensity processes of RCR and TE, which may include treatment

assignment, and other characteristics associated with the unit. τi is the random

monitoring time, and assumed to follow an Exponential distribution. The observables

for the joint dynamic LM/RCR/TE is

Di ={(N l
qi(s), N l

0i(s), Y l
i (s),Eqi(s), q = 1, 2, · · · , Q) : s ≥ 0;

(Wi(tij), j = 1, 2, · · · , mi); Xi1, Xi2, τi}

In Figure 4.2 and Figure 4.3, we show two examples of observational units. Ob-

served LM values, RCR event occurrences and TE event occurrence are plotted.

Notice that in Figure 4.3, the unit experiences terminal event before the end of the
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Figure 4.2: Data of a Single Unit Observed Under Partial Repair (Censored TE)

monitoring period τi while in Figure 4.2, the TE of the unit is censored. We assume

that the random monitoring time τi is independent of the data processes, and follows

an Exponential distribution with some parameter.

4.3 Model Description

The LM Submodel

Let (Ω,F, P) be some probability space. For a single unit i, define F = {Fs|0 ≤

s ≤ s∗} a history or filtration on the same probability space. N l
qi(s) and N l

0i(s)

are counting processes, Wi(s) is the longitudinal process, and Y l
i (s) is predictable

processes with respect to F.
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Figure 4.3: Data of a Single Unit Observed Under Partial Repair (Not Censored TE)

Conditional on the history F, the mean of the longitudinal process takes into

account fixed intercept, linear time trend, fixed covariates in Xi1, and impact of

past recurrent competing event occurrences. Frailty variable Zi is also the random

effect in the mixed model. Accounting for possible association between LM measure-

ments within the same subject, the mean process of this LM conditional model has

to consider previous LM measurement values. Although the longitudinal marker is

continuous, we only observe its values at tij ≥ 0, j = 1, 2, · · · , mi, which are prede-

termined discrete times, for the ith observational unit. So, for j = 1, 2, · · · , mi, the
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submodel for LM is

Wi(tij)|(Θl,Ftij−, Zi) = βl
0 + βl

ttij + Xi1β
l
1 + ζ lZi + Nl

i(tij−)ξl

+ δ
[
Wi(tij−1) − (βl

0 + βl
ttij−1 + Xi1β

l
1

+ ζ lZi + Nl
i(tij−1−)ξl)

]
+ ϵi(tij)

(4.1)

and let

Θl = {βl
0, βl

t, βl
1, ζ l, ξl, δ, ν, σ} (4.2)

where βl
1 and ξl are p × 1 and Q × 1 vectors, respectively. Assume for v ≥ 0, ϵi(v) iid∼

N(0, σ2), random effect Zi
iid∼ N(0, ν2). Define L(v−) = max{tij : tij ≤ v−, v ≥ 0, j =

1, 2, · · · , mi}, and

µi(v|Zi, Θl,Fv−) = βl
0 + βl

tv + X t
i1β

l
1 + ζ lZi + Nl

i(v−)ξl (4.3)

Subsequently, we write equation 4.1 in a more compact fashion

Wi(tij)|(Θl,Ftij−, Zi) = µi(tij|Zi, Θl,Ftij−) + δ
[
Wi(L(tij−))

− µi(L(tij−)|Zi, Θl,Ftij−)
]

+ ϵi(tij)
(4.4)

The RCR Submodel

History of the LM is accounted for in the intensity process of RCR. We consider a

similar setting for the RCR as in Chapter 2. For q = 1, 2, · · · , Q,

al
qi(v|Zi)dv ≡P{dN l

qi(v) = 1|αl
q, βl

q, ζ l
q, ηq,Fv−, Zi} = Y l

i (v)ρq(Nl
i(v−); αl

q)λq0(Eqi(v))

× exp(Xi2β
l
q + ζqZi + Wi[L(v−)]ηq)dv

We only measure the continuous longitudinal process Wi(v) at discrete time points,

at any time v ∈ [0, min(τi, Ti)), where Ti = s ∧ τi. Conditional on Fv−, the observed

value of LM that affects the probability of a new RCR event occurrence is measured

at tij, where the predetermined tij is the closest point in time to v.
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The covariate vector Xi2 is p2 × 1, and includes possible treatment assignment

and other demographic characteristics of unit i that is different from those in Xi1 in

the LM submodel. In this dynamic model for RCRs, both past event occurrences

and longitudinal marker values affect the probability of a new RCR event occurrence

conditional on the history. Thus,

Al
qi(s|Zi) =

∫ s

0
Y l

i (v)ρq(Nl
i(v−); αl

q)λq0(Eqi(v))

× exp(Xi2β
l
q + ζqZi + Wi[L(v−)]ηq)dv

(4.5)

The TE Submodel

History of the LM is also accounted for in the TE submodel. In a way that is similar

to the specification of the RCR submodel, the intensity process of the TE is

al
0i(v|Zi)dv ≡P{dN l

0i(v) = 1|γl
0, βl

2, ζ0, η0,Fv−, Zi} = Y l
i (v)ρ0(Nl

i(v−); γl
0)λ0(v)

× exp(Xi2β
l
2 + ζ0Zi + Wi[L(v−)]η0)dv

where ζ0 and η0 are the one-dimensional coefficients of the random effect Zi and

longitudinal marker Wi[Li(v−)]. Thus,

Al
0i(s|Zi) =

∫ s

0
Y l

i (v)ρ0(Nl
i(v−); γl

0)λ0(v)

× exp(Xi2β
l
2 + ζ0Zi + Wi[L(v−)]η0)dv

(4.6)

4.4 Generalized At-Risk Processes of LM/RCR/TE

We estimate the RCR baseline cumulative hazard probabilities Λl
q0(s), q = 1, 2, · · · , Q

at calendar time s. The frailty variable Zi, i = 1, 2, · · · , n, are not observable. Given

the Zis, the doubly-indexed processes are:

N l
qi(s, t) =

∫ s

0
I(εqi(v) ≤ t)N l

qi(dv)

Al
qi(s, t|Zi) =

∫ s

0
I(εqi(v) ≤ t)Al

qi(dv|Zi)

M l
qi(s, t|Zi) =

∫ s

0
I(εqi(v) ≤ t)M l

qi(dv|Zi)
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Proposition 2. For i = 1, 2,· · · , n, given Z = (Z1, Z2, · · · , Zn)t,

Al
qi(s, t) =

∫ t
0 Y l

qi(s, w)λq0(w)dw, where

Y l
qi(s, w|Zi) =

N l
qi(s

∧
τi)+1∑

k=1
I{w ∈ (εqik(sik−1), εqik(sik)]}

κl
qi(ε−1

qik(w))
ε

′
qik(ε−1

qik(w))
, (4.7)

and κl
qi(s|Θ) = ρq(Nl

i(s−); αl
q) exp{X t

i2β
l
q + ζqZi + Wi(L[s−])ηq}, q = 1, 2, · · · , Q; and

E−1
qik(.) is the inverse of Eqik(v) = Eqi(v)I {v ∈ (Sik−1, Sik]}.

4.5 The Complete Likelihood

Denote Θ = Θl ∪ Θ1 ∪ Θ2, where Θ1 =
{(

Λl
q0(s), q = 1, 2, · · · , Q; Λl

0(s)
)

: 0 < s < s∗
}

and Θ2 =
{

(αl
q, βl

q, ζq, ηq, q = 1, 2, · · · , Q); (γl
0, βl

2, ζ0, η0)
}

. Given the random effect

vector Z, we write the complete likelihood process of the joint dynamic models as

Lc(D(s)|Z, Θ) =
n∏

i=1

{ s∏
v=0

{ mi∏
j=1

[
Ll

i

(
Wi(v)|Zi, Θl,Fv−

)]I(v=tij)}

×LR
i (dv|Zi, Θ,Fv−)L0

i (dv|Zi, Θ,Fv−)
} (4.8)

where D(s) is the data vector of all observations on [0, s) , and Z = (Z1, Z2, · · · , Zn)T .

Given Z, the likelihood of LM at time v is

Ll
i(Wi(v)|Zi, Θl,Fv−) = (2πσ)− 1

2 exp −
{ 1

2σ2

(
Wi(v) − µi(v|Zi, Θl,Fv−)

− δ
[
Wi(L(v−)) − µi(L(v−)|Zi, Θl,Fv−)

])2
}

,

where µi(v|Zi, Θl,Fv−), is defined in equation 4.3 for µ ≥ 0. Additionally, we write

the likelihood of the RCR submodel given Zi as

LR
i (dv|Zi, Θ,Fv−) =

Q∏
q=1

[dAl
qi(v)]N l

qi(dv)[1 − dAl
qi(v)]1−N l

qi(dv),

where Al
qi(s) is defined as in equation (4.5), and for the RCR submodel,

L0
i (dv|Zi, Θ,Fv−) = [dAl

0i(v)]N l
0i(dv)[1 − dAl

0i(v)]1−N l
0i(dv),

where Al
0i(s) is defined as in equation (4.6).
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4.6 Statistical Inference

Estimation of the Baseline Cumulative Hazard Probabilities

If we know the values of the finite parameters in Θ2, given Z, we can develop a Nelson

- Aalen type of estimators of baseline cumulative hazard probabilities for both RCRs

and TE. The baseline cumulative hazard probabilities for RCR is

Λ̂q0(s, t|Θ2, Z) =
∫ t

0

∑n
i=1 N l

qi(s, dw)
Sl

q0(s, w|Θ2, Z)
(4.9)

with the aggregated generalized at-risk process of the qth RCR

Sl
q0(s, w|Θ2, Z) =

n∑
i=1

Y l
qi(s, w|Zi) (4.10)

where Y l
qi(s, w|Zi) is the generalized at-risk process for unit i derived in Proposition

2. The baseline cumulative hazard probabilities for TE

Λ̂0(v|Θ2, Z) =
∫ t

0

∑n
i=1 N l

0i(dv)
Sl

0(v|Θ2, Z)
(4.11)

with the aggregated generalized at-risk process of the TE

Sl
0(v|Θ1, Z) =

n∑
i=1

Y l
i (v|Zi) (4.12)

where Y l
i (v|Zi) is the at-risk process for unit i. Similar to Proposition 2, we define

for the TE submodel

κl
i0(s|Θ) = ρ0(Nl

i(s−); αl
0) exp{X t

i2β
l
0 + ζ0Zi + Wi(L[s−])η0} (4.13)

The PLEs of RCR and TE

We can also compute the PLEs of the baseline survival functions given Z = z and

values of the finite-dimensional parameters. For q = 1, 2, · · · , Q,

ˆ̄F l
q0(s, t|z, αl

q, βl
q, ζ l

q, ηq) =
t∏

w=0
[1 − Λ̂l

q0(s, dw|Θ2, z)] (4.14)

For the TE,
ˆ̄F l

0(v|z, γl
0, βl

2, ζ0, η0) =
t∏

w=0
[1 − Λ̂l

0(dw|Θ2, z)] (4.15)
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Estimation of the Finite Dimensional Parameters

A Profile Likelihood

From equation 4.8 , only the RCR and TE submodel likelihoods involve the infinite

- dimensional parameters in Θ1. Subsituting the expressions in 4.9 and 4.11 into the

complete likelihood in equation (4.8) , the finite-dimensional parameters in Θl ∪ Θ̂2

are obtained by maximizing the following likelihood

Ll
p(Θl ∪ Θ2|D(s), Z) =

n∏
i=1

{ mi∏
j=1

Ll
i

(
Wi(tij)|Zi, Θl,Ftij−

)}

×
[ Q∏

q=1

N l
qi(s∧τi)∏
k=1

( κl
qi(Sik|Θ2)

Sl
q0(s, εqij(Sik)|Z, Θ2)

)N l
qi(dSik)]

×
(

κl
i0(Ti|Θ2)

Sl
0(Ti|Z, Θ2)

)N l
0i(dTi)}

(4.16)

We maximize the likelihood Ll
p(Θl ∪ Θ2|D(s), Z) in the above equation, which is the

product of the LM submodel likelihood and partial likelihoods of the RCR and TE

submodels.

The Estimating Equations

To estimate Θl ∪Θ2, we obtain the following estimating equations. We find Θ̂l and Θ̂2

by differentiating the likelihood in equation 4.16. We denote that Ẑi = E[Zi|Di(s), Θ],

and Ẑ2
i = E[Z2

i |Di(s), Θ], respectively.
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ν̂ =

√∑n
i=1 Ẑ2

i

n

σ̂ =

√√√√∑n
i=1

∑mi
j=1[R̂(tij) − (1 − δ̂)ζ̂ lẐi]2∑n

i=1 mi

β̂l
0 = 1

(1 − δ̂) ∑n
i=1 mi

{ n∑
i=1

mi∑
j=1

(
[Wi(tij) − δ̂Wi(tij−1)] − [Nl

i(tij−) − δ̂Nl
i(tij−1−)]

− (tij − δ̂tij−1)β̂l
t − (1 − δ̂)(ζ̂ lẐi + X t

1iβ̂
l
1)

)}
β̂t = 1∑n

i=1
∑mi

j=1(tij − δ̂tij−1)

{ n∑
i=1

mi∑
j=1

[Wi(tij) − δ̂Wi(tij−1)] − [Nl
i(tij−)

− δ̂Nl
i(tij−1−)] − (1 − δ̂)(β̂l

0 + ζ̂ lẐi + X t
1iβ̂

l
1))]

}
β̂l

1 = 1
(1 − δ̂)

{( n∑
i=1

mi∑
j=1

[Wi(tiij) − δ̂Wi(tij−1)] − [Nl
i(tij−) − δ̂Nl

i(tij−1−)]

− (tij − δ̂tij−1)β̂l
t − (1 − δ̂)(β̂l

0 + ζ̂ lẐi)
)( n∑

i=1
miX

−1
1i

)}

ζ̂ l =
∑n

i=1
∑mi

j=1 R̂(tij)Ẑi

(1 − δ̂) ∑n
i=1 Ẑimi

δ̂ =
∑n

i=1
∑mi

j=1[Wi(tij) − µi(tij|Ẑi, Θ̂l,Ftij−)][Wi(tij−1) − µi(tij−1|Ẑi, Θ̂l,Ftij−1−)]∑n
i=1

∑mi
j=1[Wi(tij−1) − µi(tij−1|Ẑi, Θ̂l,Ftij−1−)]2

ξ̂l =
( n∑

i=1

mi∑
j=1

[Wi(tij) − δ̂Wi(tij−1)] − (tij − δ̂tij−1)β̂l
t − (1 − δ̂)(β̂l

0 + X t
1iβ

l
1

+ ζ̂ lẐi)
)(

[
n∑

i=1

mi∑
j=1

Nl
i(tij−) − δ̂Nl

i(tij−1−)]−1
)

(4.17)
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n∑
i=1

∫ τi

0

[ ∂
∂αl

q
ρq(N l

qi(v−); αl
q))

ρq(N l
qi(v−); αl

q))
−

∂
∂αl

q
Sl

q0(s,Eqi(v)|Θ2)
Sl

q0(s,Eqi(v)|Θ2)

]
N l

qi(dv) = 0

n∑
i=1

∫ τi

0

[
Xi2 −

∂
∂βl

q
Sl

q0(s,Eqi(v)|Θ2)
Sl

q0(s,Eqi(v)|Θ2)

]
N l

qi(dv) =0

n∑
i=1

∫ τi

0

[
Zi −

∂
∂ζq

Sl
q0(s,Eqi(v)|Θ2)

Sl
q0(s,Eqi(v)|Θ2)

]
N l

qi(dv) = 0

n∑
i=1

∫ τi

0

[
Wi(v) −

∂
∂ηq

Sl
q0(s,Eqi(v)|Θ2)

Sl
q0(s,Eqi(v)|Θ2)

]
N l

qi(dv) = 0

n∑
i=1

∫ τi

0

[ ∂
∂γl

0
ρ0(Nl

i(v−); γl
0)

ρ0(Nl
i(v−); γl

0)
−

∂
∂γl

0
Sl

0(v|Θ2)
Sl

0(v|Θ2)

]
N l

0i(dv) = 0

n∑
i=1

∫ τi

0

[
Xi2 −

∂
∂βl

2
Sl

0(v|Θ2)
Sl

0(v|Θ2)

]
N l

0i(dv) = 0

n∑
i=1

∫ τi

0

[
Zi −

∂
∂ζ0

Sl
0(v|Θ2)

Sl
q0(v|Θ2)

]
N l

0i(dv) = 0

n∑
i=1

∫ τi

0

[
Wi(v) −

∂
∂η0

Sl
0(v|Θ2)

Sl
0(v|Θ2)

]
N l

0i(dv) = 0

(4.18)

An EM Algorithm

We develop an EM algorithm to estimate Θl ∪ Θ2 due to the random effect Z. We

first find the log of the full likelihood:

log[L†(D(s), Z|Θ)] = log[Lc(D(s)|Z, Θ)] + log[f(Z|ν)]

= − n

2
log(ν2) −

n∑
i=1

mi∑
j=1

log σ2

2
−

n∑
i=1

( Z2
i

2ν2 +
mi∑
j=1

1
2σ2 [R(tij)

−(1 − δ)ζ lZi]2
)

+
n∑

i=1

( Q∑
q=1

N l
qi(s∧τi)∑
k=1

ζq + ζ0N
l
0i(s ∧ τi)

)
Zi

−
n∑

i=1

( Q∑
q=1

exp(ζqZi)
∫ s

0
A−

qi(dv) + exp(ζ0Zi)
∫ s

0
A−

0i(dv)
)

+
n∑

i=1

[ ∫ s

0

Q∑
q=1

log(a−
qi(v))N l

qi(dv) +
∫ s

0
log(a−

0i(v))N l
0i(dv)

]

(4.19)
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and we define

Ri(tij) =
(
Wi(tij) − δWi(tij−1)

)
−

(
N†(tij−−)ξl − δN†(tij−1−)ξl

)
− (tijβ

l
t

− δtij−1β
l
t) − (1 − δ)(βl

0 + X t
i1β

l
1)

A−
qi(s) =

∫ s

0
Y l

i (v)ρq(Nl(v−); αl
q)λq0(Eqi(v)) exp(Xi2β

l
q + Wi[L(v−]ηq)dv

a−
qi(v)dv = Y l

i (v)ρq(Nl(v−); αl
q)λq0(Eqi(v)) exp(Xi2β

l
q + Wi[L(v−]ηq)dv

A−
i0(s)dv =

∫ s

0
Y l

i (v)ρ0(Nl(v−); γl
0)λ0(v) exp(Xi2β

l
0 + Wi[L(v−]η0)dv

a−
i0(v)dv = Y l

i (v)ρ0(Nl(v−); γl
0)λ0(v) exp(Xi2β

l
0 + Wi[L(v−]η0)dv

• The E-step For Z = (Z1, Z2, · · · , Zn)t, and Lc(Di(s)|Zi, Θ) is the complete

data likelihood in equation 4.8.

E[Zi|Di(s), Θ] =
∫ ∞

−∞
Zif(Zi|Di(s), Θ) =

∫ ∞
−∞ ZiL

c(Di(s)|Zi, Θ)f(Zi|ν)dZi∫ ∞
−∞ Lc(Di(s)|Zi, Θ)f(Zi|ν)dZi

(4.20)

E[Z2
i |Di(s), Θ] =

∫ ∞

−∞
Z2

i f(Zi|Di(s), Θ) =
∫ ∞

−∞ Z2
i L

c(Di(s)|Zi, Θ)f(Zi|ν)dZi∫ ∞
−∞ Lc(Di(s)|Zi, Θ)f(Zi|ν)dZi

(4.21)

We approximate E[exp(Zi)|Di(s), Θ] using the Metropolis-Hasting Algorithm.

• The M-step Given Θ̂l, Θ̂2 and the approximations in the E-step, we will be

able to compute the estimates of the cumulative baseline hazard in equations

4.9 and 4.11. We use the notations below:

Ẑi = E[Zi|Di(s), Θ]; ̂exp(Zi) = E[exp(Zi)|Di(s), Θ]

We describe the steps of the algorithm:

0. Initialize Θ̂l,0, Θ̂0
2, and Ẑ

0
. Use Θ̂0

2, and Ẑ
0

to obtain Θ̂0
1 =

{(
Λ̂q0(s), q =

1, 2, · · · , Q; Λ̂0(s)
)
|0 < s < s∗

}
and set Θ̂old

2 = Θ̂0
2; Ẑ

old
= Ẑ

0
.

1. Maximize Ll
p(Θ|D(s)) in equation (4.16) with respect to Θ2, and obtain

Θ̂new
2 . See the estimating equations in 4.18.
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2. Compute Ẑ20
and êxp(Z)

0
.

3. Obtain Θ̂l,new by maximizing the full likelihood in equation (4.19). See the

estimating equations in 4.17 and set Θ̂l,old = Θ̂l,0.

4. Update Ẑ
old

to Ẑ
new

through approximations in the E step.

5. Update values of Θ̂old
1 to Θ̂new

1 using Θ̂new
2 and Ẑ

new
.

6. Repeat step 1 - 4 until |Θ̂l,new ∪ Θ̂new
2 − Θ̂l,old ∪ Θ̂old

2 | < tol, where tol is a

very small number.

The computational aspect of the proposed model will be dealt with in the future:

the R code that implement the inference procedure are being developed, and tested.

Simulation studies that investigate large sample properties of the estimators will be

performed as well.
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Chapter 5

Conclusion

The joint dynamic models of recurrent competing risks (RCR) and a terminal event

(TE) provides a semiparametric procedure to model possible dependence between

the RCR and TE. The models contribute to existing literature under the joint model

framework by accounting for the impact of past event occurrences on the intensity

processes, as well as incorporating effective age processes to model possible interven-

tions during the monitoring period. Additionally, the dynamic aspect of predicting

terminal event survival probabilities of a new unit from the same population offers a

possible prognostic tool for cancer research and precision medicine.

The joint dynamic models of RCR and TE with frailty case is considered to

include possible associations between different event processes induced by unobserved

variables. For the frailty case, more simulation studies are needed to definitively

conclude the quality and performance of the estimation procedure.

When there is association between a longitudinal marker (LM) and multiple time-

to event processes, simultaneously modeling a longitudinal marker, recurrent com-

peting risks and a terminal event presents greater challenges for research in joint

modeling (than compared to joint modeling only RCR and TE, for example). We

propose dynamic joint models of LM, RCR and TE that take into account the dy-

namic aspects of the data processes considered in the joint models of just RCR and

TE, and that model the dependence structure between the different data processes.

All of the joint models proposed in the dissertation can be applied to areas in-

cluding but not limited to biomedical, clinical and reliability type of research. The
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dynamic aspect of the models, and the possible prognostic tool of predicting termi-

nal event survival probabilities are appropriate for research in cancer and precision

medicine. Future research include implementing the proposed inference procedure

for the LM/RCR/TE model, and extensive simulation studies to examine the prop-

erties of the estimators. Since predicting the survival probabilities of the terminal

event process is of high interest in applications, we are also interested in developing

a dynamic way of prediction for the LM/RCR/TE model.
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